Write My Essay We are the most trusted essay writing service. Get the best essays delivered by experienced UK & US essay writers at affordable prices.
We can work on The diamond-water paradox
In âAn Inquiry into the Nature and Causes of the Wealth of Nationsâ published in 1776, Adam Smith wrote:
âNothing is more useful than water: but it will purchase scarcely anything⦠A diamond, on the contrary, has scarcely any use-value; but a very great quantity of other goods may frequently be had in exchange for itâ
Explain the diamond-water paradox and find out in the literature how economists have later solved this paradox.
Sample Solution
diseases. A conventional application of drugs is characterized by limited effectiveness, poor biodistribution, and lack of selectivity [14]. The nanoparticles (NPs) as drug delivery systems may offer a number of advantages such as protection of drugs against degradation, targeting the drugs to specific sites of action, organ or tissues, and delivery of biological molecules such as proteins, peptides, and oligonucleotides. Applications of drug nanoparticles include: both biodegradable nanoparticles for systemic drug delivery and nonbiodegradable nanoparticles for drug dissolution modification have been studied [15-18]. Proposed applications for drug nanoparticles vary from drug targeting and delivery [15, 17, 19-23] to even gene [24-26] and protein [27, 28] therapies. Administration of nanoparticles by, for example, parenteral [16] ocular [29-31] , transdermal [32], and oral routes have been studied. However, the oral route is still the most convenient, preferred, and in a lot of cases, also the most cost-effective route of drug administration [28, 33-37]. There is considerable interest in recent years in developing biodegradable nanoparticles as a drug/gene delivery system [25, 38-41]. An ideal drug-delivery system possesses two elements: the ability to target and to control the drug release. Targeting will ensure high efficiency of the drug and minimize the side effects, especially when dealing with drugs that are supposed to kill cancer cells but can also kill healthy cells when delivered to them. Controlled drug release can decrease or even prevent its side effects. The advantages of using nanoparticles for drug delivery applications rise from their three main basic properties. First, nanoparticles, because of their small size, can penetrate through smaller capillaries, which could allow efficient drug accumulation at the target sites [42, 43]. Second, the use of biodegradable materials for nanoparticle preparation can allow sustained drug release within the target site over a period of days or even weeks [44-46]. Third, the nanoparticle surface can be adapted to modify biodistribution of drugs or can be conjugated to a ligand to attain target-specific drug delivery [47, 48]. The advantages of using nanoparticles as drug delivery system include: (1) stable dosage forms of drugs which are either unstable [49, 50] or have unacceptably low bioavailability in non-nanoparticulate dosage forms[51, 52] ; (2) they control and sustain release of the drug during the transportation and at the site of localization [53], varying organ distribution of the drug and subsequent clearance of the drug so as to achieve increase in drug therapeutic efficacy and reduction in side effects [54]; (3) site-specific targeting can be achieved by attaching targeting ligands to surface of particles or use of magnetic guidance [55, 56]; (4) controlled release and particle degradation characteristics can be readily modulated by the choice of matrix constituents. Due to biodegradability, pH, ion and/or temperature sensibility of materials they allow sustained drug release within the target site over a period of days or weeks [40, 57]; (5) they can pass through smallest capillary vessels and be taken up by cells, which allow efficient drug accumulation at the target sites [58-60] because of their ultra-tiny volume and avoiding rapi>
diseases. A conventional application of drugs is characterized by limited effectiveness, poor biodistribution, and lack of selectivity [14]. The nanoparticles (NPs) as drug delivery systems may offer a number of advantages such as protection of drugs against degradation, targeting the drugs to specific sites of action, organ or tissues, and delivery of biological molecules such as proteins, peptides, and oligonucleotides. Applications of drug nanoparticles include: both biodegradable nanoparticles for systemic drug delivery and nonbiodegradable nanoparticles for drug dissolution modification have been studied [15-18]. Proposed applications for drug nanoparticles vary from drug targeting and delivery [15, 17, 19-23] to even gene [24-26] and protein [27, 28] therapies. Administration of nanoparticles by, for example, parenteral [16] ocular [29-31] , transdermal [32], and oral routes have been studied. However, the oral route is still the most convenient, preferred, and in a lot of cases, also the most cost-effective route of drug administration [28, 33-37]. There is considerable interest in recent years in developing biodegradable nanoparticles as a drug/gene delivery system [25, 38-41]. An ideal drug-delivery system possesses two elements: the ability to target and to control the drug release. Targeting will ensure high efficiency of the drug and minimize the side effects, especially when dealing with drugs that are supposed to kill cancer cells but can also kill healthy cells when delivered to them. Controlled drug release can decrease or even prevent its side effects. The advantages of using nanoparticles for drug delivery applications rise from their three main basic properties. First, nanoparticles, because of their small size, can penetrate through smaller capillaries, which could allow efficient drug accumulation at the target sites [42, 43]. Second, the use of biodegradable materials for nanoparticle preparation can allow sustained drug release within the target site over a period of days or even weeks [44-46]. Third, the nanoparticle surface can be adapted to modify biodistribution of drugs or can be conjugated to a ligand to attain target-specific drug delivery [47, 48]. The advantages of using nanoparticles as drug delivery system include: (1) stable dosage forms of drugs which are either unstable [49, 50] or have unacceptably low bioavailability in non-nanoparticulate dosage forms[51, 52] ; (2) they control and sustain release of the drug during the transportation and at the site of localization [53], varying organ distribution of the drug and subsequent clearance of the drug so as to achieve increase in drug therapeutic efficacy and reduction in side effects [54]; (3) site-specific targeting can be achieved by attaching targeting ligands to surface of particles or use of magnetic guidance [55, 56]; (4) controlled release and particle degradation characteristics can be readily modulated by the choice of matrix constituents. Due to biodegradability, pH, ion and/or temperature sensibility of materials they allow sustained drug release within the target site over a period of days or weeks [40, 57]; (5) they can pass through smallest capillary vessels and be taken up by cells, which allow efficient drug accumulation at the target sites [58-60] because of their ultra-tiny volume and avoiding rapi>
Is this question part of your Assignment?
We can help
Our aim is to help you get A+ grades on your Coursework.
We handle assignments in a multiplicity of subject areas including Admission Essays, General Essays, Case Studies, Coursework, Dissertations, Editing, Research Papers, and Research proposals